20 research outputs found

    A Comparative Study of AHP and Fuzzy AHP Method for Inconsistent Data

    Get PDF
    In various cases of decision analysis we use two popular methods – Analytical Hierarchical Process (AHP) and Fuzzy based AHP or Fuzzy AHP. Both the methods deal with stochastic data and can determine decision result through Multi Criteria Decision Making (MCDM) process. Obviously resulting values of the two methods are not same though same set of data is fed into them. In this research work, we have tried to observe similarities and dissimilarities between two methods’ outputs. Almost same trend or fluctuations in outputs have been seen for both methods’ for same set of input data which are not consistent. Both method outputs’ ups and down fluctuations are same for fifty percent cases

    A review on Video Classification with Methods, Findings, Performance, Challenges, Limitations and Future Work

    Get PDF
    In recent years, there has been a rapid development in web users and sufficient bandwidth. Internet connectivity, which is so low cost, makes the sharing of information (text, audio, and videos) more common and faster. This video content needs to be analyzed for prediction it classes in different purpose for the users. Many machines learning approach has been developed for the classification of video to save people time and energy. There are a lot of existing review papers on video classification, but they have some limitations such as limitation of the analysis, badly structured, not mention research gaps or findings, not clearly describe advantages, disadvantages, and future work. But our review paper almost overcomes these limitations. This study attempts to review existing video-classification procedures and to examine the existing methods of video-classification comparatively and critically and to recommend the most effective and productive process. First of all, our analysis examines the classification of videos with taxonomical details, the latest application, process, and datasets information. Secondly, overall inconvenience, difficulties, shortcomings and potential work, data, performance measurements with the related recent relation in science, deep learning, and the model of machine learning. Study on video classification systems using their tools, benefits, drawbacks, as well as other features to compare the techniques they have used also constitutes a key task of this review. Lastly, we also present a quick summary table based on selected features. In terms of precision and independence extraction functions, the RNN (Recurrent Neural Network), CNN (Convolutional Neural Network) and combination approach performs better than the CNN dependent method

    Salt Stress Tolerance in Rice: Emerging Role of Exogenous Phytoprotectants

    Get PDF
    Excess salinity in soil is one of the major environmental factors that limit plant growth and yield of a wide variety of crops including rice. On the basis of tolerance ability toward salinity, rice is considered as salt-sensitive crop, and growth and yield of rice are greatly affected by salinity. In general, rice can tolerate a small amount of saltwater without compromising the growth and yield. However, it greatly depends on the types and species of rice and their growth stage. Salinity-induced ionic and osmotic stresses reduce rate of photosynthesis and consequently cause oxidative stress, which is also responsible for growth reduction. The negative effects of salt stress that mentioned ultimately reduced yield of most crops including rice, except some halophytes. In recent decades, researchers have developed various approaches toward making salt-tolerant rice varieties. Using phytoprotectants is found to be effective in conferring salt tolerance to rice plants. In this chapter, we reviewed the recent reports on different aspects on salt stress tolerance strategies in light of using phytoprotectants

    HARC-New Hybrid Method with Hierarchical Attention Based Bidirectional Recurrent Neural Network with Dilated Convolutional Neural Network to Recognize Multilabel Emotions from Text

    Get PDF
    We present a modern hybrid paradigm for managing tacit semantic awareness and qualitative meaning in short texts. The main goals of this proposed technique are to use deep learning approaches to identify multilevel textual sentiment with far less time and more accurate and simple network structure training for better performance. In this analysis, the proposed new hybrid deep learning HARC model architecture for the recognition of multilevel textual sentiment that combines hierarchical attention with Convolutional Neural Network (CNN), Bidirectional Gated Recurrent Unit (BiGRU), and Bidirectional Long Short-Term Memory (BiLSTM) outperforms other compared approaches. BiGRU and BiLSTM were used in this model to eliminate individual context functions and to adequately manage long-range features. Dilated CNN was used to replicate the retrieved feature by forwarding vector instances for better support in the hierarchical attention layer, and it was used to eliminate better text information using higher coupling correlations. Our method handles the most important features to recover the limitations of handling context and semantics sufficiently. On a variety of datasets, our proposed HARC algorithm solution outperformed traditional machine learning approaches as well as comparable deep learning models by a margin of 1%. The accuracy of the proposed HARC method was 82.50 percent IMDB, 98.00 percent for toxic data, 92.31 percent for Cornflower, and 94.60 percent for Emotion recognition data. Our method works better than other basic and CNN and RNN based hybrid models. In the future, we will work for more levels of text emotions from long and more complex text

    HARC-New Hybrid Method with Hierarchical Attention Based Bidirectional Recurrent Neural Network with Dilated Convolutional Neural Network to Recognize Multilabel Emotions from Text

    Get PDF
    We present a modern hybrid paradigm for managing tacit semantic awareness and qualitative meaning in short texts. The main goals of this proposed technique are to use deep learning approaches to identify multilevel textual sentiment with far less time and more accurate and simple network structure training for better performance. In this analysis, the proposed new hybrid deep learning HARC model architecture for the recognition of multilevel textual sentiment that combines hierarchical attention with Convolutional Neural Network (CNN), Bidirectional Gated Recurrent Unit (BiGRU), and Bidirectional Long Short-Term Memory (BiLSTM) outperforms other compared approaches. BiGRU and BiLSTM were used in this model to eliminate individual context functions and to adequately manage long-range features. Dilated CNN was used to replicate the retrieved feature by forwarding vector instances for better support in the hierarchical attention layer, and it was used to eliminate better text information using higher coupling correlations. Our method handles the most important features to recover the limitations of handling context and semantics sufficiently. On a variety of datasets, our proposed HARC algorithm solution outperformed traditional machine learning approaches as well as comparable deep learning models by a margin of 1%. The accuracy of the proposed HARC method was 82.50 percent IMDB, 98.00 percent for toxic data, 92.31 percent for Cornflower, and 94.60 percent for Emotion recognition data. Our method works better than other basic and CNN and RNN based hybrid models. In the future, we will work for more levels of text emotions from long and more complex text

    Exogenous glutathione attenuates lead-induced oxidative stress in wheat by improving antioxidant defense and physiological mechanisms

    No full text
    This study aims at investigate how exogenous glutathione (GSH, 1.0 mM) affects the oxidative stress and antioxidant defense in wheat seedlings under lead (Pb) stress [0.5 and 1.0 mM Pb(NO3)2]. Lead treatment decreased growth, leaf relative water content, and chlorophyll (chl) content whereas raised proline (Pro) level. Lead stress increased H2O2 content, O2∙−\hbox{O}_2^{ \bullet - } generation rate, and membrane lipid peroxidation. Addition of Pb also disrupted antioxidant enzyme activities and status of endogenous ascorbate and GSH pool. The increase of methylglyoxal was evident under Pb stress. Glutathione supplementation under Pb stress increased antioxidant redox pool and augmented the activities of antioxidant enzymes, and decreased ROS production. Exogenous supplementation of GSH reverted the increase in the methylglyoxal level due to Pb stress due to increased activities of glyoxalase enzymes. Exogenous GSH also regulated Pro, well-maintained tissue water status and prevented chl degradation and increased plant growth and biomass. Abbreviations: AO- ascorbate oxidase; APX- ascorbate peroxidase; AsA- ascorbic acid (ascorbate); BSA- bovine serum albumin; CAT- catalase; CDNB-1-chloro-2, 4-dinitrobenzene; chl- chlorophyll; DHA- dehydroascorbate; DHAR- dehydroascorbate reductase; DTNB- 5,5′-dithio-bis (2-nitrobenzoic acid); EDTA- ethylenediaminetetraacetic acid; Gly I- glyoxalase I; Gly II- glyoxalase II; GR- glutathione reductase; GSH- reduced glutathione; GSSG- oxidized glutathione; GPX- glutathione peroxidase; GST- glutathione S-transferase; MDA- malondialdehyde; MDHA- monodehydroascorbate; MDHAR- monodehydroascorbate reductase; MG- methylglyoxal; NADPH- nicotinamide adenine dinucleotide phosphate; NBT- nitroblue tetrazolium chloride; Pb- lead; PEG- polyethylene glycol; Pro- proline, ROS- reactive oxygen species; RWC- relative water content; SLG- S-d-lactoylglutathione; SOD- superoxide dismutase; TBA- thiobarbituric acid; TCA- trichloroacetic acid

    Modulation of Cadmium Tolerance in Rice: Insight into Vanillic Acid-Induced Upregulation of Antioxidant Defense and Glyoxalase Systems

    No full text
    Cadmium (Cd) is a toxic heavy metal that enters the human food chain from the soil via plants. Increased Cd uptake and translocation in plants alters metabolism andreduces crop production. Maintaining crop yield therefore requires both soil remediation andenhanced plant tolerance to Cd. In this study, we investigated the effects of vanillic acid (VA) on Cd accumulation and Cd stress tolerance in rice (Oryza sativa L. cv. BRRI dhan54). Thirteen-day-old rice seedlings treated with CdCl2 (1.0 and 2.0 mM) for 72 h showed reduced growth, biomass accumulation, and water and photosynthetic pigment contents, as well as increased signs of oxidative stress (elevated levels of malondialdehyde, hydrogen peroxide, methylglyoxal, and lipoxygenase) and downregulated antioxidant and glyoxalase systems. Cadmium-induced changes in leaf relative turgidity, photosynthetic pigment content, ascorbate pool size, and glutathione content were suppressed by VA under both mild and severe Cd toxicity stress. The supplementation of VA under Cd stress conditions also increased antioxidant and glyoxylase enzyme activity. Vanillic acid also increased phytochelatin content and the biological accumulation factor, biological accumulation co-efficient, and Cd translocation factor. Vanillic acid, therefore appears to enhance Cd stress tolerance by increasing metal chelation and sequestration, by upregulating antioxidant defense and glyoxalase systems, and by facilitating nutrient homeostasis

    Polyamines confer salt tolerance in mung bean (Vigna radiata L.) by reducing sodium uptake, improving nutrient homeostasis, antioxidant defense and methylglyoxal detoxification systems

    Get PDF
    The physiological roles of PAs (putrescine, spermidine, and spermine) were investigated for their ability to confer salt tolerance (200 mM NaCl, 48 h) in mung bean seedlings (Vigna radiata L. cv. BARI Mung-2). Salt stress resulted in Na toxicity, decreased K, Ca, Mg, and Zn contents in roots and shoots, and disrupted antioxidant defense system which caused oxidative damage as indicated by increased lipid peroxidation, H2O2 content, O2•– generation rate, and lipoxygenase activity. Salinity-induced methylglyoxal (MG) toxicity was also clearly evident. Salinity decreased leaf chlorophyll (chl) and relative water content (RWC). Supplementation of salt affected seedlings with exogenous PAs enhanced the contents of glutathione and ascorbate, increased activities of antioxidant enzymes (dehydroascorbate reductase, glutathione reductase, catalase and glutathione peroxidase) and glyoxalase enzyme (glyoxalase II), which reduced salt-induced oxidative stress and MG toxicity, respectively. Exogenous PAs reduced cellular Na content and maintained nutrient homeostasis and modulated endogenous PAs levels in salt affected mung bean seedlings. The overall salt tolerance was reflected in improved tissue water and chl content, and better seedling growth

    Exogenous Gallic Acid Confers Salt Tolerance in Rice Seedlings: Modulation of Ion Homeostasis, Osmoregulation, Antioxidant Defense, and Methylglyoxal Detoxification Systems

    No full text
    The worldwide saline-affected area is expanding day by day, and soil salinity restricts crop development and productivity, including rice. Considering this, the current study explored the response of gallic acid (GA) in conferring salinity tolerance in rice seedlings. Fourteen-day-old rice (Oryza sativa L. cv. BRRI dhan52) seedlings were treated with 200 mM NaCl alone or combined with 1 mM GA. Salt stress resulted in osmotic, ionic, and oxidative stress in rice seedlings. Osmotic stress increased proline accumulation and osmotic potential, which decreased the relative water content, chlorophyll contents, and dry weight. Ionic stress interrupted ion homeostasis by Na+ accumulation and K+ leakage. Osmotic and ionic stress, concomitantly, disrupted antioxidant defense and glyoxalase systems by higher production of reactive oxygen species (ROS) and methylglyoxal (MG), respectively. It resulted in oxidative damage indicated by the high amount of malondialdehyde (MDA). The supplementation of GA in salt-treated rice seedlings partially recovered salt-induced damages by improving osmotic and ionic homeostasis by increasing water balance and decreasing Na+ content and Na+/K+ ratio. Supplemental GA enhanced the antioxidant defense system in salt-treated rice seedlings by increasing ascorbate (AsA), glutathione (GSH), and phenolic compounds and the activities of AsA-GSH cycle enzymes, including monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and glutathione reductase (GR) enzymes that accelerated ROS detoxification and decreased oxidative damage. Gallic acid also enhanced the detoxification of MG by triggering glyoxalase enzyme activities in salt-treated rice seedlings. The present findings elucidated that supplemental GA reversed salt-induced damage in rice seedlings through improving osmotic and ionic homeostasis and upregulating the ROS and MG detoxification system
    corecore